If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+x-198=0
a = 1; b = 1; c = -198;
Δ = b2-4ac
Δ = 12-4·1·(-198)
Δ = 793
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{793}}{2*1}=\frac{-1-\sqrt{793}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{793}}{2*1}=\frac{-1+\sqrt{793}}{2} $
| -5=2.2+z | | 2x+5x+2=51 | | 66=5y+16 | | 9.6x=-3.2 | | x+3=-24* | | 3=x/3-10 | | 10n-4=(6n-8) | | 56+126+y=180 | | 4(x–5)–16=0 | | -6.4=h-6.2 | | 30+6p+6=7(p+6)-5 | | 28+30+90+y=180 | | 4+5(x+20=7x | | -((-x+1)-3x-1=-12 | | U+10=13u | | x+5=-3x+13 | | 3a=2a+7 | | (p+3)2=(p+4)3 | | 2.6=y/7 | | m÷3+4=1 | | (-30+36a)=78 | | -9+y=8 | | d-100=13.71 | | (-30+36a)=78 | | 1/2w+3=15 | | 1-x13=x | | (9-8i)^2=0 | | 26=8+v | | 100-d=13.71 | | (4x/3)+(2/5)=(5x/15) | | 4x-5-16=0 | | (7+x)^2=12^2+x^2 |